Filip Strobin

Large free subgroups of automorphisms group of ultrahomogeneous spaces

(with Szymon Głąb)

Institute of Mathematics, Łódź z University of Technology

large free groups in groups of automorphism

groups of automorphisms

Let A be a countable structure (in fact, we should write $\mathcal{A} = (A, \mathcal{F}, \mathcal{R}, \mathcal{C})$). By Aut(A) we denote the group of automorphisms of A.

general problem

Detect those countable structures A, whose groups of auomorphisms Aut(A) contains a large free group.

Macperson (1986)

If A is ω -categorical, then Aut(A) contains a dense free subgroup of ω generators.

Automorphism group of a random graph contains a dense free subgroup of 2 generators.

Melles and Shelah (1994)

large free groups in groups of automorphism

groups of automorphisms

Let A be a countable structure (in fact, we should write $\mathcal{A} = (\mathcal{A}, \mathcal{F}, \mathcal{R}, \mathcal{C})$). By Aut(A) we denote the group of automorphisms of A.

general problem

Detect those countable structures A, whose groups of auomorphisms Aut(A) contains a large free group.

Macperson (1986)

If A is ω -categorical, then Aut(A) contains a dense free subgroup of ω generators.

Automorphism group of a random graph contains a dense free subgroup of 2 generators.

Melles and Shelah (1994)

large free groups in groups of automorphism

groups of automorphisms

Let A be a countable structure (in fact, we should write $\mathcal{A} = (\mathcal{A}, \mathcal{F}, \mathcal{R}, \mathcal{C})$). By Aut(A) we denote the group of automorphisms of A.

general problem

Detect those countable structures A, whose groups of auomorphisms Aut(A) contains a large free group.

Macperson (1986)

If A is ω -categorical, then Aut(A) contains a dense free subgroup of ω generators.

Automorphism group of a random graph contains a dense free subgroup of 2 generators.

Melles and Shelah (1994)

large free groups in groups of automorphism

groups of automorphisms

Let A be a countable structure (in fact, we should write $\mathcal{A} = (\mathcal{A}, \mathcal{F}, \mathcal{R}, \mathcal{C})$). By Aut(A) we denote the group of automorphisms of A.

general problem

Detect those countable structures A, whose groups of auomorphisms Aut(A) contains a large free group.

Macperson (1986)

If A is ω -categorical, then Aut(A) contains a dense free subgroup of ω generators.

Automorphism group of a random graph contains a dense free subgroup of 2 generators.

Melles and Shelah (1994)

large free groups in groups of automorphism

groups of automorphisms

Let A be a countable structure (in fact, we should write $\mathcal{A} = (\mathcal{A}, \mathcal{F}, \mathcal{R}, \mathcal{C})$). By Aut(A) we denote the group of automorphisms of A.

general problem

Detect those countable structures A, whose groups of auomorphisms Aut(A) contains a large free group.

Macperson (1986)

If A is ω -categorical, then Aut(A) contains a dense free subgroup of ω generators.

Automorphism group of a random graph contains a dense free subgroup of 2 generators.

Melles and Shelah (1994)

ultrahomogneous structures, c-largeness

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

examples

 ω , $(\mathbb{Q}, \leq), \dots$

'our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a family $\mathcal{H} \subset \operatorname{Aut}(A)$ of *c*-many free generators. Such groups $\operatorname{Aut}(A)$ will be called *c*-large.

4 3 b

ultrahomogneous structures, c-largeness

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

examples

 ω , $(\mathbb{Q}, \leq), \dots$

'our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a family $\mathcal{H} \subset \operatorname{Aut}(A)$ of *c*-many free generators. Such groups $\operatorname{Aut}(A)$ will be called *c*-large.

4 3 b

ultrahomogneous structures, c-largeness

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

examples

 ω , (\mathbb{Q}, \leq),...

our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a family $\mathcal{H} \subset \operatorname{Aut}(A)$ of *c*-many free generators. Such groups $\operatorname{Aut}(A)$ will be called *c*-large.

- 2 2 3 4 2 3 3

ultrahomogneous structures, c-largeness

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

examples

 ω , (\mathbb{Q}, \leq),...

'our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a family $\mathcal{H} \subset \operatorname{Aut}(A)$ of c-many free generators. Such groups $\operatorname{Aut}(A)$ will be called c-large.

ultrahomogneous structures, c-largeness

ultrahomogeneous structure

We say that a countable structure A is *ultrahomogeneous*, if each isomorphism between finitely generated substructures of A can be extended to an automorphism of A.

examples

 ω , (\mathbb{Q}, \leq),...

'our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a family $\mathcal{H} \subset \operatorname{Aut}(A)$ of c-many free generators. Such groups $\operatorname{Aut}(A)$ will be called c-large.

free generators

words

Let $y_1, y_2, ...$ be a set of letters, $m, k \ge 1, r_1, ..., r_k \in \{1, ..., m\}$ be such that $r_i \ne r_{i+1}$ for $i \in \{1, ..., k-1\}$, and $n_1, ..., n_k \in \mathbb{Z} \setminus \{0\}$. Then

$$w(y_1, ..., y_m) = y_{r_1}^{n_1} y_{r_2}^{n_2} ... y_{r_k}^{n_k}$$

is called a word of length n, where $n = |n_1| + ... + |n_k|$.

free generators

A family $\mathcal{H} \subset Aut(A)$ is a family of free generators if for every word $w(y_1, ..., y_m)$ and every distinct $f_1, ..., f_m \in \mathcal{H}$, the function

$$w(f_1,...,f_m) = f_{r_1}^{n_1} \circ f_{r_2}^{n_2} \circ ... \circ f_{r_k}^{n_k}$$

is not the identity function

- B

free generators

words

Let $y_1, y_2, ...$ be a set of letters, $m, k \ge 1, r_1, ..., r_k \in \{1, ..., m\}$ be such that $r_i \ne r_{i+1}$ for $i \in \{1, ..., k-1\}$, and $n_1, ..., n_k \in \mathbb{Z} \setminus \{0\}$. Then

$$w(y_1,...,y_m) = y_{r_1}^{n_1} y_{r_2}^{n_2} ... y_{r_k}^{n_k}$$

is called a *word of length n*, where $n = |n_1| + ... + |n_k|$.

free generators

A family $\mathcal{H} \subset Aut(A)$ is a family of free generators if for every word $w(y_1, ..., y_m)$ and every distinct $f_1, ..., f_m \in \mathcal{H}$, the function

$$w(f_1,...,f_m) = f_{r_1}^{n_1} \circ f_{r_2}^{n_2} \circ ... \circ f_{r_k}^{n_k}$$

is not the identity function

- B

free generators

words

Let $y_1, y_2, ...$ be a set of letters, $m, k \ge 1, r_1, ..., r_k \in \{1, ..., m\}$ be such that $r_i \ne r_{i+1}$ for $i \in \{1, ..., k-1\}$, and $n_1, ..., n_k \in \mathbb{Z} \setminus \{0\}$. Then

$$w(y_1,...,y_m) = y_{r_1}^{n_1} y_{r_2}^{n_2} ... y_{r_k}^{n_k}$$

is called a *word of length* n, where $n = |n_1| + ... + |n_k|$.

free generators

A family $\mathcal{H} \subset Aut(A)$ is a family of free generators if for every word $w(y_1, ..., y_m)$ and every distinct $f_1, ..., f_m \in \mathcal{H}$, the function

$$w(f_1,...,f_m) = f_{r_1}^{n_1} \circ f_{r_2}^{n_2} \circ ... \circ f_{r_k}^{n_k}$$

is not the identity function

examples

'our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a family $\mathcal{H} \subset \operatorname{Aut}(A)$ of *c*-many free generators. Such groups $\operatorname{Aut}(A)$ will be called *c*-large.

positive example

Let $A = \omega$. Then $\operatorname{Aut}(A) = S^{\infty}$ - the group of all bijections of ω . S^{∞} is \mathfrak{c} -large.

negative example

Let $A = (\omega, \{R_n : n \in \omega\})$, where R_n are unary relations such that

 $x \in R_n$ iff $x \in \{2n, 2n+1\}$.

Then for every $f \in Aut(A)$, $f \circ f = id$, so Aut(A) does not contain any nonempty family of free generators.

4 E 5 4 E

examples

"our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a family $\mathcal{H} \subset \operatorname{Aut}(A)$ of c-many free generators. Such groups $\operatorname{Aut}(A)$ will be called *c-large*.

positive example

Let $A = \omega$. Then $\operatorname{Aut}(A) = S^{\infty}$ - the group of all bijections of ω . S^{∞} is \mathfrak{c} -large.

negative example

Let $A = (\omega, \{R_n : n \in \omega\})$, where R_n are unary relations such that

 $x \in R_n$ iff $x \in \{2n, 2n+1\}$.

Then for every $f \in Aut(A)$, $f \circ f = id$, so Aut(A) does not contain any nonempty family of free generators.

4 3 5 4 3

examples

"our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a family $\mathcal{H} \subset \operatorname{Aut}(A)$ of c-many free generators. Such groups $\operatorname{Aut}(A)$ will be called c-large.

positive example

Let $A = \omega$. Then $\operatorname{Aut}(A) = S^{\infty}$ - the group of all bijections of ω . S^{∞} is c-large.

negative example

Let $A = (\omega, \{R_n : n \in \omega\})$, where R_n are unary relations such that

 $x \in R_n \text{ iff } x \in \{2n, 2n+1\}.$

Then for every $f \in Aut(A)$, $f \circ f = id$, so Aut(A) does not contain any nonempty family of free generators.

くぼう くうり くうり

examples

"our" version of the problem

Detect those countable ultrahomogeneous structures A such that there exists a family $\mathcal{H} \subset \operatorname{Aut}(A)$ of c-many free generators. Such groups $\operatorname{Aut}(A)$ will be called c-large.

positive example

Let $A=\omega.$ Then ${\rm Aut}(A)=S^\infty$ - the group of all bijections of $\omega.$ S^∞ is c-large.

negative example

Let $A = (\omega, \{R_n : n \in \omega\})$, where R_n are unary relations such that

$$x \in R_n$$
 iff $x \in \{2n, 2n+1\}$.

Then for every $f \in Aut(A)$, $f \circ f = id$, so Aut(A) does not contain any nonempty family of free generators.

- 4 回 ト - 4 回 ト

the Rasiowa-Sikorski Lemma

filters,dense sets

Let (P, \leq) be a partially ordered set (poset). We say that a set $G \subset P$ is a *filter*, if: – for every $p, q \in P$, if $p \leq q$ and $p \in G$, then $q \in G$; – for every $p_1, p_2 \in G$, there is $q \in G$ such that $q \leq p_i$ for i = 1, 2We say that a set $D \subset P$ is *dense*, if: – for every $p \in P$, there is $q \in D$ such that $q \leq p$.

the Rasiowa-Sikorski Lemma

Let (P, \leq) be a poset with ccc (in particular, countable) and $\{D_n : n \in \omega\}$ be a family of dense subsets of P.

Then there is a filter $G \subset P$ (called *a generic filter*) such that for every $n \in \omega$, $G \cap D_n \neq \emptyset$.

our idea

the Rasiowa-Sikorski Lemma

filters, dense sets

Let (P, \leq) be a partially ordered set (poset). We say that a set $G \subset P$ is a *filter*, if: – for every $p, q \in P$, if $p \leq q$ and $p \in G$, then $q \in G$; – for every $p_1, p_2 \in G$, there is $q \in G$ such that $q \leq p_i$ for i = 1, 2. We say that a set $D \subset P$ is *dense*, if: – for every $p \in P$, there is $q \in D$ such that $q \leq p$.

the Rasiowa-Sikorski Lemma

Let (P, \leq) be a poset with ccc (in particular, countable) and $\{D_n : n \in \omega\}$ be a family of dense subsets of P.

Then there is a filter $G \subset P$ (called *a generic filter*) such that for every $n \in \omega$, $G \cap D_n \neq \emptyset$.

our idea

the Rasiowa-Sikorski Lemma

filters, dense sets

Let (P, \leq) be a partially ordered set (poset). We say that a set $G \subset P$ is a *filter*, if: – for every $p, q \in P$, if $p \leq q$ and $p \in G$, then $q \in G$; – for every $p_1, p_2 \in G$, there is $q \in G$ such that $q \leq p_i$ for i = 1, 2. We say that a set $D \subset P$ is *dense*, if: – for every $p \in P$, there is $q \in D$ such that $q \leq p$.

the Rasiowa-Sikorski Lemma

Let (P, \leq) be a poset with ccc (in particular, countable) and $\{D_n : n \in \omega\}$ be a family of dense subsets of P.

Then there is a filter $G \subset P$ (called *a generic filter*) such that for every $n \in \omega$, $G \cap D_n \neq \emptyset$.

our idea

the Rasiowa-Sikorski Lemma

filters, dense sets

Let (P, \leq) be a partially ordered set (poset). We say that a set $G \subset P$ is a *filter*, if: – for every $p, q \in P$, if $p \leq q$ and $p \in G$, then $q \in G$; – for every $p_1, p_2 \in G$, there is $q \in G$ such that $q \leq p_i$ for i = 1, 2. We say that a set $D \subset P$ is *dense*, if: – for every $p \in P$, there is $q \in D$ such that $q \leq p$.

the Rasiowa-Sikorski Lemma

Let (P, \leq) be a poset with ccc (in particular, countable) and $\{D_n : n \in \omega\}$ be a family of dense subsets of P.

Then there is a filter $G \subset P$ (called *a generic filter*) such that for every $n \in \omega$, $G \cap D_n \neq \emptyset$.

our idea

the poset (\mathbb{P},\leq)

poset (\mathbb{P}, \leq)

By \mathbb{P} we denote the set of pairs (n, p), such that

- $n \in \omega$;
- $p: \{0,1\}^n \rightarrow \operatorname{Part}(A);$
- for every $s \in \{0,1\}^n$, |dom(p(s))| = n.

The set \mathbb{P} is ordered in the following way: $(n, p) \leq (k, q)$ iff

- $n \ge k;$
- if $t \prec s$, then $q(t) \subset p(s)$.

 (\mathbb{P},\leq) is countable.

partial automorphisms generated by a filter

Let G be a filter on (\mathbb{P}, \leq) and $\alpha \in \{0, 1\}^{\omega}$. Then

$$g(\alpha) = \bigcup \{p(\alpha|_n) : (p, n) \in G\}$$

the poset (\mathbb{P},\leq)

poset (\mathbb{P},\leq)

By \mathbb{P} we denote the set of pairs (n, p), such that

- $n \in \omega$;
- $p: \{0,1\}^n \rightarrow \mathsf{Part}(A);$
- for every $s \in \{0,1\}^n$, |dom(p(s))| = n.

The set \mathbb{P} is ordered in the following way: $(n, p) \leq (k, q)$ iff

- $n \ge k$;
- if $t \prec s$, then $q(t) \subset p(s)$.

 (\mathbb{P},\leq) is countable.

partial automorphisms generated by a filter

```
Let G be a filter on (\mathbb{P}, \leq) and \alpha \in \{0, 1\}^{\omega}. Then
```

$$g(\alpha) = \bigcup \{p(\alpha|_n) : (p, n) \in G\}$$

the poset (\mathbb{P},\leq)

poset (\mathbb{P},\leq)

By \mathbb{P} we denote the set of pairs (n, p), such that

- $n \in \omega$;
- $p: \{0,1\}^n \rightarrow \mathsf{Part}(A);$
- for every $s \in \{0,1\}^n$, |dom(p(s))| = n.

The set \mathbb{P} is ordered in the following way: $(n, p) \leq (k, q)$ iff

- $n \ge k$;
- if $t \prec s$, then $q(t) \subset p(s)$.

 (\mathbb{P},\leq) is countable.

partial automorphisms generated by a filter

```
Let G be a filter on (\mathbb{P}, \leq) and \alpha \in \{0, 1\}^{\omega}. Then
```

$$g(\alpha) = \bigcup \{p(\alpha|_n) : (p, n) \in G\}$$

the poset (\mathbb{P},\leq)

poset (\mathbb{P},\leq)

By \mathbb{P} we denote the set of pairs (n, p), such that

- $n \in \omega$;
- $p: \{0,1\}^n \rightarrow \mathsf{Part}(A);$
- for every $s \in \{0,1\}^n$, |dom(p(s))| = n.

The set \mathbb{P} is ordered in the following way: $(n, p) \leq (k, q)$ iff

- $n \ge k$;
- if $t \prec s$, then $q(t) \subset p(s)$.

 (\mathbb{P},\leq) is countable.

partial automorphisms generated by a filter

Let G be a filter on (\mathbb{P}, \leq) and $\alpha \in \{0, 1\}^{\omega}$. Then

$$g(\alpha) = \bigcup \{p(\alpha|_n) : (p, n) \in G\}$$

definitions of sets

sets D_k

For every $k \in A$, let

 $D_k = \{(p, n) \in \mathbb{P} : \forall_{s \in \{0,1\}^n} \ k \in \operatorname{dom}(p(s)) \cap \operatorname{rng}(p(s))\}$

sets $D_w^{s_1,\ldots,s_m}$

For every word $w(y_1, ..., y_m)$, every $k \in \mathbb{N}$ and every pairwise distinct $s_1, ..., s_m \in \{0, 1\}^k$, define

 $D_w^{s_1,\ldots,s_m} = \{(n,p) : n \ge k, \text{ and for every } \}$

 $t_1, ..., t_m \in \{0, 1\}^n$ with $s_i \prec t_i$ we have $w(p(t_1), ..., p(t_m)) \neq \mathsf{id}\}$

sets D_k and $D_w^{s_1,\ldots,s_m}$ are "good"

Assume that G is a filter on \mathbb{P} such that $G \cap D_k \neq \emptyset$ and $G \cap D_w^{s_1,...,s_m} \neq \emptyset$ for all $k, w, s_1, ..., s_m$. Then $\{g(\alpha) : \alpha \in \{0, 1\}^{\omega}\}$ is a family of \mathfrak{c} many free generators.

definitions of sets

sets D_k

For every $k \in A$, let

 $D_k = \{(p, n) \in \mathbb{P} : \forall_{s \in \{0,1\}^n} \ k \in \operatorname{dom}(p(s)) \cap \operatorname{rng}(p(s))\}$

sets $D_w^{s_1,\ldots,s_m}$

For every word $w(y_1, ..., y_m)$, every $k \in \mathbb{N}$ and every pairwise distinct $s_1, ..., s_m \in \{0, 1\}^k$, define

 $D_w^{s_1,\ldots,s_m} = \{(n,p) : n \ge k, \text{ and for every } \}$

 $t_1, ..., t_m \in \{0, 1\}^n$ with $s_i \prec t_i$ we have $w(p(t_1), ..., p(t_m)) \neq \mathsf{id}\}$

sets D_k and $D_w^{s_1,\ldots,s_m}$ are "good"

Assume that G is a filter on \mathbb{P} such that $G \cap D_k \neq \emptyset$ and $G \cap D_w^{s_1,...,s_m} \neq \emptyset$ for all $k, w, s_1, ..., s_m$. Then $\{g(\alpha) : \alpha \in \{0, 1\}^{\omega}\}$ is a family of \mathfrak{c} many free generators.

definitions of sets

sets D_k

For every $k \in A$, let

 $D_k = \{(p, n) \in \mathbb{P} : \forall_{s \in \{0,1\}^n} \ k \in \operatorname{dom}(p(s)) \cap \operatorname{rng}(p(s))\}$

sets $D_w^{s_1,\ldots,s_m}$

For every word $w(y_1,...,y_m)$, every $k \in \mathbb{N}$ and every pairwise distinct $s_1,...,s_m \in \{0,1\}^k$, define

 $D_w^{s_1,\ldots,s_m} = \{(n,p) : n \ge k, \text{ and for every } \}$

 $t_1,...,t_m \in \{0,1\}^n$ with $s_i \prec t_i$ we have $w(p(t_1),...,p(t_m)) \neq \mathsf{id}\}$

sets D_k and $D_w^{s_1,\ldots,s_m}$ are "good"

Assume that G is a filter on \mathbb{P} such that $G \cap D_k \neq \emptyset$ and $G \cap D_w^{s_1,...,s_m} \neq \emptyset$ for all $k, w, s_1, ..., s_m$. Then $\{g(\alpha) : \alpha \in \{0, 1\}^{\omega}\}$ is a family of \mathfrak{c} many free generators. the main result

definitions of sets

sets D_k

For every $k \in A$, let

 $D_k = \{(p, n) \in \mathbb{P} : \forall_{s \in \{0,1\}^n} \ k \in \operatorname{dom}(p(s)) \cap \operatorname{rng}(p(s))\}$

sets $D_{w}^{s_1,\ldots,s_m}$

For every word $w(y_1, ..., y_m)$, every $k \in \mathbb{N}$ and every pairwise distinct $s_1, ..., s_m \in \{0, 1\}^k$, define

 $D_w^{s_1,\ldots,s_m} = \{(n,p) : n \ge k, \text{ and for every} \}$

 $t_1, ..., t_m \in \{0, 1\}^n$ with $s_i \prec t_i$ we have $w(p(t_1), ..., p(t_m)) \neq id\}$

sets D_k and $D_w^{s_1,\ldots,s_m}$ are "good"

Assume that G is a filter on \mathbb{P} such that $G \cap D_k \neq \emptyset$ and $G \cap D_w^{s_1,...,s_m} \neq \emptyset$ for all $k, w, s_1, ..., s_m$. Then $\{g(\alpha) : \alpha \in \{0,1\}^{\omega}\}$ is a family of \mathfrak{c} many free generators.

proof

sets D_k and $D_w^{s_1,\ldots,s_m}$ are "good"

Assume that G is a filter on \mathbb{P} such that $G \cap D_k \neq \emptyset$ and $G \cap D_w^{\mathfrak{s}_1, \dots, \mathfrak{s}_m} \neq \emptyset$ for all $k, w, \mathfrak{s}_1, \dots, \mathfrak{s}_m$. Then $\{g(\alpha) : \alpha \in \{0, 1\}^{\omega}\}$ is a family of \mathfrak{c} many free generators.

proof

Let $k \in A$. Let $(p, n) \in G \cap D_k$. Then for any $\alpha \in \{0, 1\}^{\omega}$,

 $k \in \operatorname{dom}(p(\alpha|_n)) \cap \operatorname{rng}(p(\alpha|_n)) \subset \operatorname{dom}(g(\alpha)) \cap \operatorname{rng}(g(\alpha)).$

Let $w(y_1, ..., y_m)$ be a word and $\alpha_1, ..., \alpha_m \in \{0, 1\}^{\omega}$ be distinct. Then there is $k \in \omega$ such that $\alpha_1|_k, ..., \alpha_m|_k$ are distinct. Let $(n, p) \in G \cap D_{\omega_1|_k, ..., \alpha_m|_k}^{\alpha_1|_k, ..., \alpha_m|_k}$. Then there is $x_0 \in A$ such that

 $w(p(\alpha_1|_n),...,p(\alpha_m|_n))(x_0)\neq x_0.$

In particular,

 $w(g(\alpha_1),...,g(\alpha_k))(x_0)=w(p(\alpha_1|_n),...,p(\alpha_m|_n))(x_0)\neq x_0.$

proof

sets D_k and $D_w^{s_1,...,s_m}$ are "good"

Assume that G is a filter on \mathbb{P} such that $G \cap D_k \neq \emptyset$ and $G \cap D_w^{s_1,...,s_m} \neq \emptyset$ for all $k, w, s_1, ..., s_m$. Then $\{g(\alpha) : \alpha \in \{0,1\}^{\omega}\}$ is a family of \mathfrak{c} many free generators.

proof

Let $k \in A$. Let $(p, n) \in G \cap D_k$. Then for any $\alpha \in \{0, 1\}^{\omega}$,

 $k \in \operatorname{dom}(p(\alpha|_n)) \cap \operatorname{rng}(p(\alpha|_n)) \subset \operatorname{dom}(g(\alpha)) \cap \operatorname{rng}(g(\alpha)).$

Let $w(y_1, ..., y_m)$ be a word and $\alpha_1, ..., \alpha_m \in \{0, 1\}^{\omega}$ be distinct. Then there is $k \in \omega$ such that $\alpha_1|_k, ..., \alpha_m|_k$ are distinct. Let $(n, p) \in G \cap D_{\alpha_1}^{\alpha_1|_k, ..., \alpha_m|_k}$. Then there is $x_0 \in A$ such that

 $w(p(\alpha_1|_n),...,p(\alpha_m|_n))(x_0)\neq x_0.$

In particular,

 $w(g(\alpha_1),...,g(\alpha_k))(x_0)=w(p(\alpha_1|_n),...,p(\alpha_m|_n))(x_0)\neq x_0.$

proof

sets D_k and $D_w^{s_1,\ldots,s_m}$ are "good"

Assume that G is a filter on \mathbb{P} such that $G \cap D_k \neq \emptyset$ and $G \cap D_{s_1}^{w_1,\dots,s_m} \neq \emptyset$ for all $k, w, s_1, ..., s_m$. Then $\{g(\alpha) : \alpha \in \{0,1\}^{\omega}\}$ is a family of \mathfrak{c} many free generators.

proof

Let $k \in A$. Let $(p, n) \in G \cap D_k$. Then for any $\alpha \in \{0, 1\}^{\omega}$,

$$k \in \mathsf{dom}(p(\alpha|_n)) \cap \mathsf{rng}(p(\alpha|_n)) \subset \mathsf{dom}(g(\alpha)) \cap \mathsf{rng}(g(\alpha))$$

Let $w(y_1, ..., y_m)$ be a word and $\alpha_1, ..., \alpha_m \in \{0, 1\}^{\omega}$ be distinct. Then there is $k \in \omega$ such that $\alpha_1|_k, ..., \alpha_m|_k$ are distinct.

Let $(n, p) \in G \cap D_w^{\alpha_1|_k, \dots, \alpha_m|_k}$. Then there is $x_0 \in A$ such that

$$w(p(\alpha_1|_n),...,p(\alpha_m|_n))(x_0)\neq x_0.$$

In particular,

$$w(g(\alpha_1),...,g(\alpha_k))(x_0) = w(p(\alpha_1|_n),...,p(\alpha_m|_n))(x_0) \neq x_0.$$

what should be assumed about A?

problem

What should be assumed about A, sets D_k and $D_w^{s_1,\ldots,s_m}$ are dense in \mathbb{P} ?

denseness of D_k

Assume that A is such that each finitely generated substructure is finite. Then for every $k \in \mathbb{N}$, the set D_k is dense in \mathbb{P} .

3 N

what should be assumed about A?

problem

What should be assumed about A, sets D_k and $D_w^{s_1,\ldots,s_m}$ are dense in \mathbb{P} ?

denseness of D_k

Assume that A is such that each finitely generated substructure is finite. Then for every $k \in \mathbb{N}$, the set D_k is dense in \mathbb{P} .

(B) < B)</p>

what should be assumed about A?

problem

What should be assumed about A, sets D_k and $D_w^{s_1,\ldots,s_m}$ are dense in \mathbb{P} ?

denseness of D_k

Assume that A is such that each finitely generated substructure is finite. Then for every $k \in \mathbb{N}$, the set D_k is dense in \mathbb{P} .

(x_0, x_n) -function

sets $D_w^{s_1,\ldots,s_m}$ - (x_0,\ldots,x_n) -functions

Let $x_0, ..., x_n$ be distinct elements. We say that a function g is an $(x_0, ..., x_n)$ -function, if there are integers $0 \le a_1 < b_1 < a_2 < b_2 < ... < a_k < b_k \le n$ such that for every r = 1, ..., k, $g(x_i) = x_{i+1}$ for every $i = a_r, ..., b_r - 1$

or

$$g(x_i) = x_{i-1}$$
 for every $i = a_{r+1}, ..., b_r$

and dom(g) contains exactly those $x'_i s$ which appear in the above condition.

($x_0, ..., x_n$)-functions are good

For every nonempty word $w(y_1, ..., y_m)$ of the length n, and distinct $x_0, ..., x_n$, there exist $(x_0, ..., x_n)$ -functions $g_1, ..., g_m$ such that $w(g_1, ..., g_m)(x_0) = x_n$.

(x_0, \dots, x_n) -function

sets $D_w^{s_1,\ldots,s_m}$ - (x_0,\ldots,x_n) -functions

Let $x_0, ..., x_n$ be distinct elements. We say that a function g is an $(x_0, ..., x_n)$ -function, if there are integers $0 \le a_1 < b_1 < a_2 < b_2 < ... < a_k < b_k \le n$ such that for every r = 1, ..., k, $g(x_i) = x_{i+1}$ for every $i = a_r, ..., b_r - 1$

or

$$g(x_i) = x_{i-1}$$
 for every $i = a_{r+1}, ..., b_r$

and dom(g) contains exactly those $x'_i s$ which appear in the above condition.

($x_0,...,x_n$)-functions are good

For every nonempty word $w(y_1, ..., y_m)$ of the length n, and distinct $x_0, ..., x_n$, there exist $(x_0, ..., x_n)$ -functions $g_1, ..., g_m$ such that $w(g_1, ..., g_m)(x_0) = x_n$.

< 回 > < 三 > < 三 >

(x_0, \dots, x_n) -function

sets $D_w^{s_1,\ldots,s_m}$ - (x_0,\ldots,x_n) -functions

Let $x_0, ..., x_n$ be distinct elements. We say that a function g is an $(x_0, ..., x_n)$ -function, if there are integers $0 \le a_1 < b_1 < a_2 < b_2 < ... < a_k < b_k \le n$ such that for every r = 1, ..., k, $g(x_i) = x_{i+1}$ for every $i = a_r, ..., b_r - 1$

or

$$g(x_i) = x_{i-1}$$
 for every $i = a_{r+1}, ..., b_r$

and dom(g) contains exactly those $x'_i s$ which appear in the above condition.

$(x_0, ..., x_n)$ -functions are good

For every nonempty word $w(y_1, ..., y_m)$ of the length n, and distinct $x_0, ..., x_n$, there exist $(x_0, ..., x_n)$ -functions $g_1, ..., g_m$ such that $w(g_1, ..., g_m)(x_0) = x_n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

(*) condition and main result

(*) condition

(*) For any finitely generated substructures $B_1, B_2 \subset A$ and any $m \in \mathbb{N}$, there exist pairwise distinct $x_0, ..., x_n \in A \setminus (B_1 \cup B_2)$ such that for any embedding $f: B_1 \to B_2$, and for any $(x_0, ..., x_n)$ -function g, there exists an embedding $f_g: \operatorname{gen}(B_1 \cup \operatorname{dom}(g)) \to A$ such that $f, g \subset f_g$.

denseness of $D_w^{s_1,\ldots,s_m}$

Assume that A satisfies (*) and each finitely generated substructure of A is finite. Then each set $D_{s_1,\dots,s_m}^{s_1,\dots,s_m}$ is dense in \mathbb{P} .

main theorem, S. Głąb, 2013

Assume that A satisfies (*) and each finitely generated substructure of A is finite. Then Aut(A) is c-large.

A B > A B >

(*) condition and main result

(*) condition

(*) For any finitely generated substructures $B_1, B_2 \subset A$ and any $m \in \mathbb{N}$, there exist pairwise distinct $x_0, ..., x_n \in A \setminus (B_1 \cup B_2)$ such that for any embedding $f : B_1 \to B_2$, and for any $(x_0, ..., x_n)$ -function g, there exists an embedding $f_g : \text{gen}(B_1 \cup \text{dom}(g)) \to A$ such that $f, g \subset f_g$.

denseness of $D_w^{s_1,\ldots,s_m}$

Assume that A satisfies (*) and each finitely generated substructure of A is finite. Then each set $D_w^{s_1,\ldots,s_m}$ is dense in \mathbb{P} .

main theorem, S. Głąb, 2013

Assume that A satisfies (*) and each finitely generated substructure of A is finite. Then Aut(A) is c-large.

< 回 > < 三 > < 三 >

(*) condition and main result

(*) condition

(*) For any finitely generated substructures $B_1, B_2 \subset A$ and any $m \in \mathbb{N}$, there exist pairwise distinct $x_0, ..., x_n \in A \setminus (B_1 \cup B_2)$ such that for any embedding $f : B_1 \to B_2$, and for any $(x_0, ..., x_n)$ -function g, there exists an embedding $f_g : \text{gen}(B_1 \cup \text{dom}(g)) \to A$ such that $f, g \subset f_g$.

denseness of $D_w^{s_1,\ldots,s_m}$

Assume that A satisfies (*) and each finitely generated substructure of A is finite. Then each set $D_{w}^{s_{1},...,s_{m}}$ is dense in \mathbb{P} .

main theorem, S. Głąb, 2013

Assume that A satisfies (*) and each finitely generated substructure of A is finite. Then Aut(A) is c-large.

< 回 > < 三 > < 三 >

(*) condition and main result

(*) condition

(*) For any finitely generated substructures $B_1, B_2 \subset A$ and any $m \in \mathbb{N}$, there exist pairwise distinct $x_0, ..., x_n \in A \setminus (B_1 \cup B_2)$ such that for any embedding $f : B_1 \to B_2$, and for any $(x_0, ..., x_n)$ -function g, there exists an embedding $f_g : \text{gen}(B_1 \cup \text{dom}(g)) \to A$ such that $f, g \subset f_g$.

denseness of $D_w^{s_1,\ldots,s_m}$

Assume that A satisfies (*) and each finitely generated substructure of A is finite. Then each set $D_w^{s_1,\ldots,s_m}$ is dense in \mathbb{P} .

main theorem, S. Głąb, 2013

Assume that A satisfies (*) and each finitely generated substructure of A is finite. Then Aut(A) is c-large.

同 ト イ ヨ ト イ ヨ ト

corollaries

ω

The structure ω satisfies (*) and every finitely generated substructure is finite.

S^∞ group

The group S^{∞} of all bijections of ω is c-large.

(\mathbb{Q},\leq)

the structure ($\mathbb{Q},\leq)$ satisfies (*) and every finitely generated substructure is finite.

the group of all inequality preserving bijections of $\mathbb Q$

The group of all inequality preserving bijections of $\mathbb Q$ is $\mathfrak c$ -large.

- T-

A B > A B >

corollaries

ω

The structure ω satisfies (*) and every finitely generated substructure is finite.

S^∞ group

The group S^{∞} of all bijections of ω is c-large.

(\mathbb{Q},\leq)

the structure (\mathbb{Q},\leq) satisfies (*) and every finitely generated substructure is finite.

the group of all inequality preserving bijections of $\mathbb Q$

The group of all inequality preserving bijections of $\mathbb Q$ is $\mathfrak c$ -large.

< 回 > < 三 > < 三 >

corollaries

ω

The structure ω satisfies (*) and every finitely generated substructure is finite.

S^{∞} group

The group S^{∞} of all bijections of ω is c-large.

(\mathbb{Q},\leq)

the structure (\mathbb{Q},\leq) satisfies (*) and every finitely generated substructure is finite.

the group of all inequality preserving bijections of ${\mathbb Q}$

The group of all inequality preserving bijections of $\mathbb Q$ is $\mathfrak c$ -large.

< 回 > < 三 > < 三 >

corollaries

ω

The structure ω satisfies (*) and every finitely generated substructure is finite.

S^{∞} group

The group S^{∞} of all bijections of ω is c-large.

(\mathbb{Q},\leq)

the structure (\mathbb{Q},\leq) satisfies (*) and every finitely generated substructure is finite.

the group of all inequality preserving bijections of ${\mathbb Q}$

The group of all inequality preserving bijections of $\mathbb Q$ is c-large.

・ 同 ト ・ ヨ ト ・ ヨ ト

corollaries

ω

The structure ω satisfies (*) and every finitely generated substructure is finite.

S^{∞} group

The group S^{∞} of all bijections of ω is c-large.

(\mathbb{Q},\leq)

the structure (\mathbb{Q},\leq) satisfies (*) and every finitely generated substructure is finite.

the group of all inequality preserving bijections of $\ensuremath{\mathbb{Q}}$

The group of all inequality preserving bijections of $\mathbb Q$ is $\mathfrak c$ -large.

- 4 回 ト - 4 回 ト

corollaries

rational Urysohn space

A rational Urysohn space is a countable metric space U with rational distances, such that every finite metric space with rational distances has an isometric copy in U.

A rational metric space satisfies (*) and finite substructures are finite.

the group of isometries of U

The group of all isometries of a rational Urysohn space U is \mathfrak{c} -large.

random graph

A random graph \mathbb{G} is a countable graph such that for every finite $X, Y \subset \mathbb{G}$, there is a vertex with edges going to each vertex from X, and no edge going to a vertex of Y.

A random graph satisfies (*) and each finitely generated substructure is finite.

the group of all automorphisms of a random graph

The group of all automorphisms of a random graph is α-large.

corollaries

rational Urysohn space

A rational Urysohn space is a countable metric space U with rational distances, such that every finite metric space with rational distances has an isometric copy in U.

A rational metric space satisfies (*) and finite substructures are finite.

the group of isometries of U

The group of all isometries of a rational Urysohn space U is c-large.

random graph

A random graph \mathbb{G} is a countable graph such that for every finite $X, Y \subset \mathbb{G}$, there is a vertex with edges going to each vertex from X, and no edge going to a vertex of Y.

A random graph satisfies (*) and each finitely generated substructure is finite.

the group of all automorphisms of a random graph

The group of all automorphisms of a random graph is c-large.

corollaries

rational Urysohn space

A rational Urysohn space is a countable metric space U with rational distances, such that every finite metric space with rational distances has an isometric copy in U.

A rational metric space satisfies (*) and finite substructures are finite.

the group of isometries of U

The group of all isometries of a rational Urysohn space U is c-large.

random graph

A random graph \mathbb{G} is a countable graph such that for every finite $X, Y \subset \mathbb{G}$, there is a vertex with edges going to each vertex from X, and no edge going to a vertex of Y.

A random graph satisfies (*) and each finitely generated substructure is finite.

the group of all automorphisms of a random graph

The group of all automorphisms of a random graph is c-large.

the main result

corollaries

rational Urysohn space

A rational Urysohn space is a countable metric space U with rational distances, such that every finite metric space with rational distances has an isometric copy in U.

A rational metric space satisfies (*) and finite substructures are finite.

the group of isometries of U

The group of all isometries of a rational Urysohn space U is c-large.

random graph

A random graph \mathbb{G} is a countable graph such that for every finite $X, Y \subset \mathbb{G}$, there is a vertex with edges going to each vertex from X, and no edge going to a vertex of Y.

A random graph satisfies (*) and each finitely generated substructure is finite.

corollaries

rational Urysohn space

A rational Urysohn space is a countable metric space U with rational distances, such that every finite metric space with rational distances has an isometric copy in U.

A rational metric space satisfies (*) and finite substructures are finite.

the group of isometries of U

The group of all isometries of a rational Urysohn space U is c-large.

random graph

A random graph \mathbb{G} is a countable graph such that for every finite $X, Y \subset \mathbb{G}$, there is a vertex with edges going to each vertex from X, and no edge going to a vertex of Y.

A random graph satisfies (*) and each finitely generated substructure is finite.

the group of all automorphisms of a random graph

The group of all automorphisms of a random graph is c-large.

corollaries

countable atomless Boolean algebra

A countable atomless Boolean algebra ${\mathbb B}$ satisfies (*) and finitely generated subalgebras are finite.

the group of all automorphisms of a countable atomless Boolean algebra

The group of all automorphisms of a countable atomless Boolean algebra is c-large.

★ Ξ > < Ξ >

corollaries

countable atomless Boolean algebra

A countable atomless Boolean algebra ${\mathbb B}$ satisfies (*) and finitely generated subalgebras are finite.

the group of all automorphisms of a countable atomless Boolean algebra

The group of all automorphisms of a countable atomless Boolean algebra is c-large.

corollaries

countable atomless Boolean algebra

A countable atomless Boolean algebra ${\mathbb B}$ satisfies (*) and finitely generated subalgebras are finite.

the group of all automorphisms of a countable atomless Boolean algebra

The group of all automorphisms of a countable atomless Boolean algebra is c-large.

more complicated problem

problem

Let $\mathcal{F} \subset Aut(A)$ be a family of free generators. Does there exists a family \mathcal{H} of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{H}$ is a family of free generators?

theorem, Głąb, S. (2013)

Let $\mathcal{F} \subset S^{\infty}$ be a countable family of free generators. Then there is a family $\mathcal{H} \subset S^{\infty}$ of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{H}$ is a family of free generators.

idea of a proof

(here $A = \omega$) For every word $w(y_1, ..., y_{m+l})$, every $s_1, ..., s_m \in \{0, 1\}^k$ and every $f_1, ..., f_l \in \mathcal{F}$, the set

$$D^{s_1,\ldots,s_m}_{w,f_1,\ldots,f_l}=\{(n,p):n\geq k, \text{ and for every }$$

 $t_1, ..., t_m \in \{0, 1\}^n$ with $s_i \prec t_i$ we have $w(p(t_1), ..., p(t_m), f_1, ..., f_l) \neq id\}$

is dense in \mathbb{P} .

< 回() (三) (三)

more complicated problem

problem

Let $\mathcal{F} \subset \operatorname{Aut}(A)$ be a family of free generators. Does there exists a family \mathcal{H} of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{H}$ is a family of free generators?

theorem, Głąb, S. (2013)

Let $\mathcal{F} \subset S^{\infty}$ be a countable family of free generators. Then there is a family $\mathcal{H} \subset S^{\infty}$ of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{H}$ is a family of free generators.

idea of a proof

(here $A = \omega$) For every word $w(y_1, ..., y_{m+l})$, every $s_1, ..., s_m \in \{0, 1\}^k$ and every $f_1, ..., f_l \in \mathcal{F}$, the set

$$D^{s_1,\ldots,s_m}_{w,f_1,\ldots,f_l}=\{(n,p):n\geq k, \text{ and for every }$$

 $t_1, ..., t_m \in \{0, 1\}^n$ with $s_i \prec t_i$ we have $w(p(t_1), ..., p(t_m), f_1, ..., f_l) \neq \mathsf{id}\}$.

is dense in \mathbb{P} .

< 回() (三) (三)

more complicated problem

problem

Let $\mathcal{F} \subset \operatorname{Aut}(A)$ be a family of free generators. Does there exists a family \mathcal{H} of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{H}$ is a family of free generators?

theorem, Głąb, S. (2013)

Let $\mathcal{F} \subset S^{\infty}$ be a countable family of free generators. Then there is a family $\mathcal{H} \subset S^{\infty}$ of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{H}$ is a family of free generators.

idea of a proof

(here $A = \omega$) For every word $w(y_1, ..., y_{m+l})$, every $s_1, ..., s_m \in \{0, 1\}^k$ and every $f_1, ..., f_l \in \mathcal{F}$, the set

$$D^{s_1,\ldots,s_m}_{w,f_1,\ldots,f_l}=\{(n,p):n\geq k, \text{ and for every }$$

 $t_1, ..., t_m \in \{0, 1\}^n$ with $s_i \prec t_i$ we have $w(p(t_1), ..., p(t_m), f_1, ..., f_l) \neq id\}$

is dense in \mathbb{P} .

< 回() (三) (三)

more complicated problem

problem

Let $\mathcal{F} \subset \operatorname{Aut}(A)$ be a family of free generators. Does there exists a family \mathcal{H} of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{H}$ is a family of free generators?

theorem, Głąb, S. (2013)

Let $\mathcal{F} \subset S^{\infty}$ be a countable family of free generators. Then there is a family $\mathcal{H} \subset S^{\infty}$ of cardinality \mathfrak{c} such that $\mathcal{F} \cup \mathcal{H}$ is a family of free generators.

idea of a proof

(here $A = \omega$) For every word $w(y_1, ..., y_{m+l})$, every $s_1, ..., s_m \in \{0, 1\}^k$ and every $f_1, ..., f_l \in \mathcal{F}$, the set

$$D^{s_1,\ldots,s_m}_{w,f_1,\ldots,f_l}=\{(n,p):n\geq k, ext{ and for every }$$

 $t_1,...,t_m \in \{0,1\}^n \text{ with } s_i \prec t_i \text{ we have } w(p(t_1),...,p(t_m),f_1,...,f_l) \neq \mathsf{id}\}.$

is dense in \mathbb{P} .

a result under MA(c)

theorem, Głąb, S. (2013)

Assume $MA(\mathfrak{c})$. Then for every family $\mathcal{F} \subset S^{\infty}$ of less than \mathfrak{c} many free generators, there exists a family $\mathcal{H} \subset S^{\infty}$ of cardinality \mathfrak{c} such that $\mathcal{H} \cup \mathcal{F}$ is a family of free generators.

A >

A B > A B >

a result under MA(c)

theorem, Głąb, S. (2013)

Assume $MA(\mathfrak{c})$. Then for every family $\mathcal{F} \subset S^{\infty}$ of less than \mathfrak{c} many free generators, there exists a family $\mathcal{H} \subset S^{\infty}$ of cardinality \mathfrak{c} such that $\mathcal{H} \cup \mathcal{F}$ is a family of free generators.

3 N

Thank you for your attention

.≣ .⊳

[GK] P.M. Gartside, R.W. Knight, *Ubiquity of free groups*, Bull. Lond. Math. Soc. 35 (2003) 624–634.

[GS] S. Głąb, F. Strobin, *Large free subgroups of automorphisms groups of ultrahomogeneous spaces*, submitted.

[M1] H.D. Macpherson, *Groups of automorphisms of aleph*₁-*categorical structures*, Quart. J. Math. Oxford Ser. (2) 37 (1986) 449–465.

[M2] H.D. Macpherson, *A survey of homogeneous structures*. Discrete Math. 311 (2011), no. 15, 1599–1634.

[MS] G. Melles, S. Shelah, Aut(M) has a large dense free subgroup for saturated M. Bull. London Math. Soc. 26 (1994), no. 4, 339–344.

4 E 6 4 E 6